Following the Metal to Mott insulator Transition¶
Sequence of plots showing the transfer of spectral weight for a Hubbard Model in the Bethe Lattice as the local interaction is raised.
# Code source: Óscar Nájera
# License: BSD 3 clause
from __future__ import division, absolute_import, print_function
import matplotlib.pyplot as plt
import numpy as np
from dmft.twosite import refine_mat_solution
axis = 'matsubara'
du = 0.05
beta = 50
u_int = [2., 4.5, 5.85, 6.]
out_file = axis+'_halffill_b{}_dU{}'.format(beta, du)
res = np.load(out_file+'.npy')
for u in u_int:
ind = np.abs(res[:, 0] - u).argmin()
f, (ax1, ax2) = plt.subplots(2, sharex=True)
ax1.set_title('Transition to Mott Insulator at '
'$\\beta=${} and U/D={}'.format(beta, u/2))
sim = refine_mat_solution(res[ind, 2], u)
w = sim.omega.imag
s = sim.GF[r'$\Sigma$']
g = sim.GF['Imp G']
ax1.plot(w, g.imag, 'b+')
ax1.set_xlim([w.min(), w.max()])
ax2.plot(w, s.imag, 'b+')
bound = s.imag.min() * 1.2
ax2.set_ylim([np.max([bound, -25]), 0])
ax1.set_ylabel(r'$\Im m G_{imp}(\omega)$', color='b')
ax2.set_ylabel(r'$\Im m \Sigma(\omega)$', color='b')
ax2.set_xlabel('$i\\omega_n / t$')
Total running time of the script: ( 0 minutes 0.745 seconds)