Following the Metal to Mott insulator Transition¶
Sequence of plots showing the transfer of spectral weight for a Hubbard Model in the Bethe Lattice as the local dopping is increased.
![../../_images/sphx_glr_plot_dop_A_001.png](../../_images/sphx_glr_plot_dop_A_001.png)
# Code source: Óscar Nájera
# License: BSD 3 clause
from __future__ import division, absolute_import, print_function
import matplotlib.pyplot as plt
import numpy as np
from slaveparticles.quantum import dos
axis = 'real'
u = 8.0
beta = 1e3
dop = [0.25, 0.5, 0.75, 0.9, 0.99]
out_file = axis+'_dop_b{}_U{}'.format(beta, u)
res = np.load(out_file+'.npy')
f, axes = plt.subplots(len(dop), sharex=True)
axes[0].set_title(r'$A(\omega)$ under doping U={} at '
'$\\beta=${}'.format(u, beta))
axes[-1].set_xlabel('$\\omega / t$')
f.subplots_adjust(hspace=0)
for ax, n in zip(axes, dop):
ind = np.abs(res[:, 0] - n).argmin()
sim = res[ind, 1]
w = sim.omega
s = sim.GF[r'$\Sigma$']
ra = w + sim.mu - s
rho = dos.bethe_lattice(ra, sim.t)
ax.plot(w, rho,
label='n={:.2f}'.format(sim.ocupations().sum()))
ax.set_xlim([-6, 6])
ax.set_ylim([0, 0.36])
ax.set_yticks([])
ax.set_ylabel('n={:.2f}'.format(sim.ocupations().sum()))
ax.legend(loc=0, handlelength=0)
Total running time of the script: ( 0 minutes 0.397 seconds)