.. _sphx_glr_auto_examples_twosite_plot_dop_A.py: ================================================ Following the Metal to Mott insulator Transition ================================================ Sequence of plots showing the transfer of spectral weight for a Hubbard Model in the Bethe Lattice as the local dopping is increased. .. image:: /auto_examples/twosite/images/sphx_glr_plot_dop_A_001.png :align: center .. code-block:: python # Code source: Óscar Nájera # License: BSD 3 clause from __future__ import division, absolute_import, print_function import matplotlib.pyplot as plt import numpy as np from slaveparticles.quantum import dos axis = 'real' u = 8.0 beta = 1e3 dop = [0.25, 0.5, 0.75, 0.9, 0.99] out_file = axis+'_dop_b{}_U{}'.format(beta, u) res = np.load(out_file+'.npy') f, axes = plt.subplots(len(dop), sharex=True) axes[0].set_title(r'$A(\omega)$ under doping U={} at ' '$\\beta=${}'.format(u, beta)) axes[-1].set_xlabel('$\\omega / t$') f.subplots_adjust(hspace=0) for ax, n in zip(axes, dop): ind = np.abs(res[:, 0] - n).argmin() sim = res[ind, 1] w = sim.omega s = sim.GF[r'$\Sigma$'] ra = w + sim.mu - s rho = dos.bethe_lattice(ra, sim.t) ax.plot(w, rho, label='n={:.2f}'.format(sim.ocupations().sum())) ax.set_xlim([-6, 6]) ax.set_ylim([0, 0.36]) ax.set_yticks([]) ax.set_ylabel('n={:.2f}'.format(sim.ocupations().sum())) ax.legend(loc=0, handlelength=0) **Total running time of the script:** ( 0 minutes 0.397 seconds) .. container:: sphx-glr-footer .. container:: sphx-glr-download :download:`Download Python source code: plot_dop_A.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: plot_dop_A.ipynb ` .. rst-class:: sphx-glr-signature `Generated by Sphinx-Gallery `_