=============== Energy formulas =============== .. _kinetic_energy: Kinetic Energy ============== This energy is the weigthed average of non-interacting kinetic energy. Assuming a non-interacting Hamiltonian in momentum space the kinetic average is. .. math:: \langle T \rangle = Tr \frac{1}{\beta} \sum_{k,n} \epsilon_k^0 G(k, i\omega_n) It can be transformed into a treatable form relying on local quantities .. math:: \langle T \rangle = Tr \frac{1}{\beta} \sum_{k,n} \left( \epsilon_k^0 G(k, i\omega_n) + G(k, i\omega_n)^{-1}G(k, i\omega_n) - G^{free}(k, i\omega_n)^{-1}G^{free}(k, i\omega_n) \right) .. math:: = Tr \frac{1}{\beta} \sum_{k,n} \left( \epsilon_k^0 G(k, i\omega_n) + (i\omega_n - \epsilon_k^0 - \Sigma(i\omega_n))G(k, i\omega_n) - (i\omega_n - \epsilon_k^0)G^{free}(k, i\omega_n) \right) .. math:: = Tr \frac{1}{\beta} \sum_{k,n} \left( i\omega_n \left( G(k, i\omega_n)- G(k, i\omega_n)^{free} \right) - \Sigma(i\omega_n) G(k, i\omega_n) + \epsilon_k^0G^{free}(k, i\omega_n) \right) The first two terms can be summed in reciprocal space to yield a local the quantities that come out of the DMFT self-consistency and the last term as it belongs to the non-interacting system is trivially solvable .. math:: \langle T \rangle = Tr \frac{1}{\beta} \sum_n \left( i\omega_n \left( G(i\omega_n)- G(i\omega_n)^{free} \right) - \Sigma(i\omega_n)G(i\omega_n) \right) + \int_{-\infty}^\infty \epsilon\rho(\epsilon)n_F(\epsilon-\mu) d\epsilon It is also possible to take a simpler approac by introducing a zero to the frequecy sum, with a constant factor. In this case one takes from .. math:: \langle T \rangle = Tr \frac{1}{\beta} \sum_{k,n} \left( \epsilon_k^0 G(k, i\omega_n) + G(k, i\omega_n)^{-1}G(k, i\omega_n) \right) .. math:: = Tr \frac{1}{\beta} \sum_{k,n} \left( \epsilon_k^0 G(k, i\omega_n) + (i\omega_n - \epsilon_k^0 - \Sigma(i\omega_n))G(k, i\omega_n) \right) But the local self-energy can be expresed by .. math:: \Sigma(i\omega_n) = \mathcal{G}^{0, -1} - G(i\omega_n)^{-1} = i\omega_n - h_{loc} - \Delta(i\omega_n) - G(i\omega_n)^{-1} Where :math:`h_{loc}` is the momentum independent part of the hamiltonian. Then the expression transforms into. .. math:: \langle T \rangle = Tr \frac{1}{\beta} \sum_{k,n} \left(h_{loc} + \Delta(i\omega_n)\right) G(k, i\omega_n) = Tr \frac{1}{\beta} \sum_n \left(h_{loc} + \Delta(i\omega_n)\right) G(i\omega_n) .. _potential_energy: Potential energy ================ According to [Fetter-Walecka]_ in equation 23.14 then transformed to Matsubara frequencies the potential energy can be described by: .. math:: \langle V \rangle = \frac{1}{\beta} \sum_{k,n} \frac{1}{2}\left( i\omega_n - \epsilon_k^0 \right)Tr G(k, i\omega_n) And expressing it in local quantities with the DMFT approximation that the Self-Energy is local .. math:: \langle V \rangle = \frac{1}{\beta} \sum_{n} \frac{1}{2} Tr(\Sigma(i\omega_n)G(i\omega_n)) :label: local_potential_energy References ---------- .. [Fetter-Walecka] Fetter, Walecka, Quantum Theory of many-particle systems