.. _sphx_glr_auto_examples_twosite_plot_dispersion.py: Spectral dispersion of insulator ================================ What does the insulator show for Hubbard bands. They are sharp as in the Hubbard I approximation. .. rst-class:: sphx-glr-horizontal * .. image:: /auto_examples/twosite/images/sphx_glr_plot_dispersion_001.png :scale: 47 * .. image:: /auto_examples/twosite/images/sphx_glr_plot_dispersion_002.png :scale: 47 .. rst-class:: sphx-glr-script-out Out:: 4 9.2695705889e-06 [ 0.5 0.5] | .. code-block:: python # Author: Óscar Nájera # License: BSD 3 clause from __future__ import division, absolute_import, print_function import matplotlib.pyplot as plt import numpy as np from dmft.twosite import TwoSite_Real from slaveparticles.quantum import dos import dmft.common as gf fig = plt.figure() solver = TwoSite_Real U = 4 beta = 1e5 sim = solver(beta, 0.5) sim.mu = U / 2 convergence = False hyb = 0.4 while not convergence: old = hyb sim.solve(U / 2, U, old) hyb = sim.hyb_V() hyb = (hyb + old) / 2 convergence = np.abs(old - hyb) < 1e-5 print(U, hyb, sim.ocupations()) sim.solve(U / 2, U, hyb) hyb = sim.hyb_V() plt.plot(sim.omega, sim.GF[r'$\Sigma$']) plt.plot(sim.omega, sim.GF[r'Imp G']) w = sim.omega s = sim.GF[r'$\Sigma$'] g = sim.GF['Imp G'] ra = w + sim.mu - s rho = dos.bethe_lattice(ra, sim.t) plt.plot(w, rho) g = gf.semi_circle_hiltrans(ra + 0.01j) plt.plot(w, g.imag) plt.figure() eps_k = np.linspace(-1., 1., 61) lat_gfs = 1 / np.add.outer(-eps_k, ra + 0.01j) Aw = np.clip(-lat_gfs.imag / np.pi, 0, 2,) x, y = np.meshgrid(eps_k, w) plt.pcolormesh(x, y, Aw.T, cmap=plt.get_cmap(r'viridis'), vmin=0, vmax=2) **Total running time of the script:** ( 0 minutes 0.292 seconds) .. container:: sphx-glr-footer .. container:: sphx-glr-download :download:`Download Python source code: plot_dispersion.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: plot_dispersion.ipynb ` .. rst-class:: sphx-glr-signature `Generated by Sphinx-Gallery `_